Uranium Mobility in Groundwater at the 300 Area of the Hanford Site

J.W. Lindberg and R.J. Serne

Pacific Northwest National Laboratory

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

Hanford Site and 300 Area Location Map

Location of Wells and Liquid Waste Facilities

300 Area Photograph

Geologic Cross-Section

Water Table Map (Low to Normal River Stage)

Water Table Map (High River Stage)

Uranium Plume Map -Low to Normal River Stage

300 Area Uranium Contours for FY1999

Uranium Plume Map High River Stage

300 Area Uranium, June 2002

Change in Uranium Concentration

Uranium Plume Map -Low to Normal River Stage

300 Area Uranium, December 2002

Well 399-1-17A Uranium Trend Plot Process Trenches Discharge History

300 Area Uranium Leach and Adsorption Study Serne, et al., PNNL-14022 (Nov. 2002)

Results of Adsorption Tests

- K_d values ranged from 0 to 100 mL/g depending on solution tested.
 - Total inorganic carbon (e.g., CO₃) had greatest impact.
 - pH important too, but in field highly buffered.
- Predicted K_d values:
 - 2 to 4 mL/g for full-strength groundwater
 - 7 mL/g or higher for groundwater mixed with river water.

Well Location Map

Well 399-1-16A

Well Location Map

Well 399-1-2

During Trench Use

After Trench Operation Ceased

Well 399-1-17A

Recent High River Stage

Remaining Concerns

- ► What is the original source of the uranium in the groundwater?
 - Is the U in groundwater from percolation from near-surface or from already dissolved U in the original wastewater?
- Fate and Transport
 - How does the U in the deeper vadose zone leach with contact with "recharge" water?
- What is the "speciation" of the U bound to solids?
 - Is the adsorbed U in the aquifer the same form as was found in the near-surface sediments?
- Vadose Zone Pore Water
 - What is the composition of vadose zone pore water and what is the U speciation in vadose zone pore water?

